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https://docs.google.com/file/d/1p204R2JPJaClRPoXxQ9Y8Y88pk0-FOqp/preview

Statistics Without Borders Helps UNICEF

1 JULY 2016 809 VIEWS NO COMMENT

Stephanie Eckman, Monica Dashen, Aliou Diouf Mballo, and Robert Johnston

Experts Leverage Statistical Methods to
Investigate Human Trafficking

Use of GPS-Enabled Mobile Devices to Conduct
Health Surveys: Child Mortality in Sierra Leone

Haiti after the earthquake
Statistics Without Borders

When a major disaster strikes, urgent needs may be food, water, shelter, medicines - and data. Unless you know the
numbers of people involved and how their lives have been affected, giving efficient help is impossible. Statistics
Without Borders tries to provide the data. The team that worked on a project in Haiti describe one effort.
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Client Organization: Montgomery County, Community Emergency
Response Team ~
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MCCERT asked SWB to try this methodology in an independent
geographic area around Palo Alto, California

134

e e &l
il COMMUNITY EMERGENCY
i

Steve Peterson
Virtual Emergency Response Team

RESPONSETEAM

Steve developed a framework (Peterson et al., 2019) to
utilize Twitter data to inform emergency response in the
National Capital Region using George Mason University’s
streaming analytics system, Citizen Helper.




3-Month Project
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ollaboration by video, email, phone, text, and chat
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SWB + MCCERT
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The Process
 Establish methods for predicting the relevance of
Tweets for emergency response

o Data wrangling, conditional statements

o Natural Language Processing, Pre-processing

o Modeling Approaches: Supervised, Unsupervised




Tweet

This stresses me out. Why? Because my clinic has a &3 e
shortage of supplies as well. We also had to lock up (communry emERGENCY
supplies because people are stealing them. PPE like

gloves & masks are vital! #seattlecovid19

o - o e = —ieiie—. ~Mar13

A hospital in Seattle area has sent out a note to staff, shared with me,
suspending elective surgery and warning that "our local COVID-19 trajectory is
likely to be similar to that of Northern Italy." The hospital is down to a four-day
supply of gloves.

6:46 PM - Mar 13, 2020 - Twitter for iPhone
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Example of Methods and Models Applied SWB + MCCERT

e \Word Embeddings: TF-IDF, Word2vec, GLOVE, =%
fastText it FE DT

e Unsupervised Learning: K-Means Clustering, compirscoc
,DBSCAN, Latent Dirichlet Allocation (Topic Modeling)

e Upsampling the minority class: SMOTE

e Transfer Learning: MERS — COVID-19

e Supervised Learning:

Naive Bayes, Logistic Regression, GLMNET,

Support Vector Machines, ULMFIT, and

XGBOOST,




Deliverables to MMCERT
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Data acquisition pipeline

Text preprocessing scripts

Auditable model pipelines

A collection of tweets over the course of the beginning
of widespread awareness of the COVID-19 epidemic
with emergency response relevance predictions



: for Social Good

Wrangling
Visualizing
Modeling
Explaining
Communicating
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from pandas.io.json import json_normalize
from sklearn.metrics.pairwise import linear_kernel Share Comments
pd.set_option('display.max_colwidth', -1)
pd.set_optionff'display.float_format', lambda x: ‘%&f' % xJ
Yes N¢
def normalize_url(data): 5 G
. import datetime
»
d print(‘normalize_url Start:', datetime.datetime.now())
data['Ext URL'] = data['Ext URL'].fillna('[]"').map(lambda x: x.strip())
norm_url = pd.DataFrame()
for i, row in data.iterrows():

ext_url = row['Ext URL']
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EXPLORER + parse_jsonpy X % string_match.py % get_datapy

v OPEN EDITORS sic D data > % parse jsonpy > @ accuracy score
X % parse jsonpy sc\data 9+ import gensim

from gensim.models import word2vec

% string_match.py src\
P get datapy src\data import nltk
a 8 ey from sklearn.decomposition import PCA
E 3 from sklearn.model_selection import train_test_split
- VS COVID: 15 TWATTER: REPOD 32 from nltk.stem import PorterStesmer
a” > misc-resources from sklearn.linear model import LogisticRegression
> pipeline 34 from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
v sre from sklearn.metrics import accuracy score, confusion matrix
> data ® 36 import matplotlib.pyplot as plt
> features ‘ L cst X 2
\ £ from datetime import datetime
5 > models 3¢ from gensim.models import KeyedVectors, Word2Vec
£ readme u 20 ot ays
Q Q env a1 from tweepy.streaming import StreamlListener
.gitignore u 42 lmport multiprocessing -
i README.md 43 from pandas.io.json import jsmmlonwllze
44 import tweepy
15 import nltk

nltk import wordpunct_tokenize
import re
from nltk.corpus import stopwords

53 import string

54 import pandas as pd

55 from nltk.tokenize import word_tokenize
56 import boto3

imporAt numpy as np

from pathlib import Path

from dotenv import find_dotenv, load dotenv
import time

import 1json

import sqlalchemy

preprocessor as p

from gensim.models.doc2vec import TaggedDocument
sqlalchemy import create_engine
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tqdm.pandas (desc="progress-bar")
class SymptomFinder():

def __init_ (self, client_csv_fname, oov_csv_fname, broadened_client_csv_fname, mers_csv_fname):
self.nlp = spacy.load("en_core_web_sm™)
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JHU Public'Dashboard vs. Using JHU Data (2020-3-8)

Cumulative Cases of COVID-19 in the US
As of 2020-3-8
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ML/AI predictions are probabilistic.
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Machine Learning Interpretability (MLI)

More complex models take more work to explain, but may no longer be “black boxes”
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Machine Learning Interpretability MLI)%—

- Goal 1a: Task Performance .
- Goal 1b: Understand the model (what s driving predictions?)
- Goal 1c: Prlvacy, Falrness and Provide the nght to Explanatlon

- Tools that heIp |
- Global Variable Importance
- What is the weighting of variable contributions to predlctlons on average’?
= In NLP: Which words in which contexts contribute most to positive predictions?
- Local Variable Importance
- What is the weighting of varlable contributions to specific observations?

- Surrogate Decision Trees [ NN

- Share a model of the prediction rules by outcome class




Machine Learning Interpretability (MLI)
Sas A

Sensitivity Analysis
Vary the inputs; make small changes| |
How does this influence predictions?y_, ~ 1. il |
What small changes would “push observations (or people) over the threshold”? -

This may inform subsequent iterations in data collectiong™
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humans, which, unfortunately, are not automatically solved, and can even be
amplified, when machines are put in control.” - Zhang and Bareinboim (2017)
“Fairness in machine learning is an emerging topic with the overarching aim toj
critically assess algorithms (predictive and classification models) whether their

Disparate Impact Analysis -, :
ex) Accuracy Parity... [performance metric] by group relative to the reference
e G/
- Root Cause Analysis | |
- Do we know whether protected features influenced the prediction? «
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P - U TS NN
ENow that we understand a model do we trust

t? =

- What features did our Mllor Al Iearn from?
- * Which of these features should it have learned from?

” * Which of these features shouldn t be learned from?
@ |5 this a model for social good ?/ /g
e Who does the model serve? %
* Who doesn’t the model serve
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